Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel.
نویسندگان
چکیده
Voltage-gated calcium channels are key components in the etiology and pathogenesis of epilepsies. Former studies mainly focused on P/Q-type Ca(v)2.1 and T-type Ca(v)3.2 Ca(2+) channels involved in absence epileptogenesis, but recent findings also point to an intriguing role of the Ca(v)2.3 E/R-type Ca(2+) channel in ictogenesis and seizure propagation. Based on the observation that Ca(v)2.3 is thought to induce plateau potentials in CA1 pyramidal cells, which can trigger epileptiform activity, our recent investigation revealed reduced PTZ-seizure susceptibility and altered seizure architecture in Ca(v)2.3(-/-) mice compared with controls. In the present study we tested hippocampal seizure susceptibility in Ca(v)2.3-deficient mice using surface and deep intrahippocampal telemetric EEG recordings as well as phenotypic seizure video analysis. Administration of kainic acid (30 mg/kg ip) revealed clear alteration in behavioral seizure architecture and dramatic resistance to limbic seizures in Ca(v)2.3(-/-) mice compared with controls, whereas no difference in hippocampal EEG seizure activity between both genotypes could be detected at this suprathreshold dosage. The same tendency was observed for NMDA seizure susceptibility (150 mg/kg ip) approaching the level of significance. In addition, histochemical analysis within the hippocampus revealed that excitotoxic effects after kainic acid administration are absent in Ca(v)2.3(-/-) mice, whereas Ca(v)2.3(+/+) animals exhibited clear and typical signs of excitotoxic cell death. These findings clearly indicate that the Ca(v)2.3 voltage-gated calcium channel plays a crucial role in both hippocampal ictogenesis and seizure generalization and is of central importance in neuronal degeneration after excitotoxic events.
منابع مشابه
Gender specific hippocampal whole genome transcriptome data from mice lacking the Cav2.3 R-type or Cav3.2 T-type voltage-gated calcium channel
Voltage-gated Ca2+ channels are of central relevance in mediating numerous intracellular and transcellular processes including excitation-contraction coupling, excitation secretion-coupling, hormone and neurotransmitter release and gene expression. The Cav2.3 R-type Ca2+ channel is a high-voltage activated channel which plays a crucial role in neurotransmitter release, long-term potentiation an...
متن کاملReview: Cav2.3 R-type Voltage-Gated Ca2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity
BACKGROUND Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on C...
متن کاملThe actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons.
Calcium influx through NMDA receptors and voltage-dependent calcium channels (VDCC) mediates an array of physiological processes in neurons and may also contribute to neuronal degeneration and death in neurodegenerative conditions such as stroke and severe epileptic seizures. Gelsolin is a Ca2+-activated actin-severing protein that is expressed in neurons, wherein it may mediate motility respon...
متن کاملVoltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits.
Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has...
متن کاملVoltage-Gated R-Type Calcium Channel Inhibition via Human m-, d-, and k-opioid Receptors Is Voltage-Independently Mediated by Gbg Protein Subunits
Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein–coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by mor k-ORs is poorly defined and has n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2007